¹H NMR Study of Ionic Motions in High Temperature Solid Phases of (CH₃NH₃)₂ZnCl₄

Hiroyuki Ishida

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan Reprint requests to Prof. Dr. H. I.; E-mail: ishidah@cc.okayama-u.ac.jp

Z. Naturforsch. **55 a,** 412–414 (2000); received January 8, 2000

The reorientation of the tetrahedral complex anion ZnC_k^{2-} and the self-diffusion of the cation in $(CH_3NH_3)_2ZnCl_4$ were studied by 1H NMR spin-lattice relaxation time $(^1H\ T_1)$ experiments. In the second highest-temperature phase, the temperature dependence of $^1H\ T_1$ observed at 8.5 MHz could be explained by a magnetic dipolar-electric quadrupolar cross relaxation between 1H and chlorine nuclei, and the activation energy of the anion motion was determined to be $105\ kJ$ mol 1 . In the highest-temperature phase, the activation energy of the self-diffusion of the cation was determined to be $58\ kJ$ mol $^{-1}$ from the temperature and frequency dependence of $^1H\ T_1$.

Key words: Nuclear Magnetic Resonance; Molecular Motion; Cross Relaxation; (СӉNH₃)₂ZnCl₄.